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ABSTRACT 

We obtain a general formula for the rapidity gap distribution 

in short-range order models and relate the exponential slope at large 

gaps to the behavior of topological cross sections. 
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The distribution P(r) of the length r of rapidity gaps between 

charged secondaries produced in high-energy hadron collisions has 

been the subject of extensive experimental study and has also been analyzed 

using various theoretical models [ f-31 . In n-p and pp collisions 

throughout the Fermilab energy range [ 41 , and according to recent 

data on pp collisions at the CERN ISR [ 51 , the observed fall of P(r) 

at large r is well described by an exponential function 

P(r) a exp(-r/R), r 2 1. 5, (1) 

with slope parameter R = 1. We refer here to the so-called 

“nondiffractive” events. Furthermore, the distribution of rapidity 

gaps between negatively-charged secondaries has the same exponential 

form at large r, and the data are compatible with 

R- = R. (2) 

This behavior of rapidity gap distributions can be simply 

accounted for [ 11 if one postulates that particle production proceeds 

by independent emission of clusters. Indeed, under the usual assumptions 

about cluster decay and for r large enough, the distribution of rapidity 

gaps between the decay products of clusters approaches the distribution 

of rapidity gaps between clusters. The assumed Poisson distribution 

in the number of produced clusters then implies that 

P(r) h exp (-p,r) , (3) 
r-cm 
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where p 
C 

is the mean density of clusters in rapidity. The equality (2) 

is predicted to hold as well. 

In this Letter we derive, without reference to any specific model, 

a simple and general relation between two distinct pieces of experimental 

information , multiplicity distributions and rapidity gap distributions, 

and thereby estimate the slope parameter R. This relation shows directly 

that Eqs.(l) and (2) are consequences of short-range order in the 

structure of inclusive spectra. We also estimate R using two different 

models of particle production, namely the cluster emission model and the 

multiperipheral model. Although they are based upon different input 

data, all these estimates are close to each other, and close to the 

observed value of R. The overall consistency is remarkable. 

Let us calculate the probability G( y’. y”) that no particle lies 

in the rapidity interval (y’, y”). The inclusive densities will be denoted 

by P~(Y~>Y~, . .,yj). Now assume for simplicity that the number of 

particles in (y’. y”) cannot exceed N and let yj c (y’, y”) for j =I, 2, . . . N. 

Then pN(y,, . . . , yN) is equal to the exclusive probability to find N 
r 

particles at y*, . . . , yN. Similarly, p N-l(Yi’ ’ 1.3Y,-,) - 
J 

dyN pN(yI>. . ..Y,) 

is the exclusive probability to find N-l particles at y 1, . . . , yNslj etc. 

The probability G(y’, y”) is obtained by subtracting from unity the 

probabilities to find N, N-l,. . . 1 particles in the interval. Upon letting 

N tend to infinity we obtain 
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G(y’,~“) = i +zi $$ I“ dyl . . . (” dyjpj(y1,...,yj).(4) 

Y’ Y’ 

The point of this heuristic derivation was to make Eq. (4) more 

transparent, but a rigorous derivation can be carried through using 

functional techniques. Results of this sort have been rediscovered 

relatively recently in high-energy physics, but have been known for 

many years in the study of stochastic point processes [ 61 . 

Using the definition of the inclusive correlation functions 

Cj(Y,, . . . , yj), we may rewrite Eq. (4) as 

G(y’,y”) =exp[jz #rciyi . . . r’ dyj Cj (y,, . . ..yj]. 

Y’ Y’ (5) 

We now assume that hadronic scaling holds and restrict our attention 

to the central region, in which the effect of phase-space boundaries 

can be ignored. In this regime the correlation functions depend only 

upon rapidity differences, so G(y’,y”) = G(y’ - y”). As discussed in 

[ 11 Jhe rapidity gap distribution is computed as 

P(r) =(1/ pl)(d2/dr2) G(r). (6) 

Following this rather general discussion, let us make explicit 

the consequences of the short-range order (SRO) property of inclusive 

spectra. It is convenient to define the generating function 

Q(z,Y) = 
( 
i/uinel(Y) 

> 
Lx zn on(Y), 
n 

(7) 
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where Y denotes the available rapidity interval. Under the SRO 

hypothesis, we have 

log Q (z,Y) * Ya(z) +0(i) . (8) 
Y- m 

The correlation moments fj are simply related to derivatives of a(z) by 

+0(1/Y) . 

Z=l 

(9) 

If the rapidity gap r greatly exceeds the length X over which correlations 

are appreciable, we obtain 

Y” d j dyj Cj(yl....,yj) =r. a(z) + O(l), 

Y’ 
dzJ 

z= 1 (IO) 

so that 

G(r) - 
Y-m 

r>> X 
1 

+0(l) . (11) 

z =I 

The sum in the exponent is a formal expression for a(0) - a(l). Since 

a(l) = 0 by construction, Eqs. (6) and (11) lead to a rapidity gap 

distribution of the form (1). with 

1/R = -a(O). (12) 

In addition, because n= n 
charged 

= 2n- + incident charge, we have 

the relation a-(zG) = a(z). In analogy to Eq. (12) we also have 

1/R- = -a-(O), (13) 
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whereupon we observe that R and R are equal. 

To evaluate R we exploit the connection between a(0) and the 

multiplicity distribution. Following the suggestion of [ 71 , we invert 

Eq. (7) to obtain an integral representation for u,(Y). The integral is 

evaluated by saddle-point techniques which yield 

On(Y)/uines(Y) * e 
Ya(O) s e Yb(n/Y) 

Y--m 
n! (14) 

3 fixed 

where b(n/ Y) depends on dynamical details and satisfies b(0) = 0. To 

disentangle the several factors which contribute to the energy dependence 

of a,(Y), we plot in Fig. l(a) 

L(n/ Y)? + 
r ( 

log n ! on(Y )I DineI 
) 

- n log Y 1 , (15) 

a form suggested by the SRO result (14). If the SRO hypothesis holds, 

the data at all energies should follow a scaling curve given by 

L(n/Y) = a(0) + b(n/Y). The data indeed scale as remarked in [ 71 , 

so we may estimate a(0) = -1 from the intercept of the scaling curve. 

In principle we should exclude from on(Y) the contributions of 

diffractive events. To explore how this would alter the estimate of a(O), 

we have subtracted 2,3 and 1.4 mb from o 
2' D4' U6. [ We regard 

these as generous, if not particularly precise, estimates of the diffractive 

“- 

contributions. 1 The resulting plot of L(n/ Y), shown in Fig. l(b), 

again shows a universal behavior and yields a(0) = - 1. 2. We conclude 
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that R = 1 with an uncertainty of roughly 20%, comparable to the 

uncertainty in the determination of R from rapidity gap distributions. 

We turn now from a relation of data with data to estimates of 

R in specific SRO models. In multi-Regge exchange models, for 

example, if the on(Y) were exclusive cross sections we would extract 

from (14) the familiar result 

a(0) = 2aR(0) - (~~(0) - 1, (16) 

where LYE and o,(O) are the Reggeon and Pomeron intercepts. The 

summation over unobserved neutrals in the topological cross section 

o,(Y) is expected to renormalize the value of a(0) given by (16). The 

correction to (16) depends on the strength of the correlation between 

the number of charged and neutral secondaries. If the number of 

neutrals no were completely determined by n, the renormalization would 

be negligible. Conversely, the correction to (16) would be maximal if 

n and no were totally uncorrelated; a tentative estimate with a Chew- 

Pignotti model gives a(0) = - 2/ 3 instead of the value a(O)= -1 given by 

(16) with aR(0) = I/2, rup(0) = 1. The behavior of <no(n)> at high 

energies [ 101 indicates a rather strong correlation between no and n, 

so we consider a(0) = -1 a reliable estimate, with an uncertainty 

significantly smaller than 30%. 

Consider next the independent emission of clusters. From (1) 

and (3) we obtain 1/R = pc. As emphasized in [ I] , the observation of 
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the tail of P(r) yields an estimate of pc which is independent of any 

assumption on the intracluster multiplicity distribution. Such assumptions 

are necessary to extract pc from inclusive or semi-inclusive spectra. 

On the other hand, as pointed out by Stodolsky [ 111 , if clusters are 

emitted independently, the inclusive distribution of the emitting source 

(the leading particle) should take the form 

do PC - 1 

dx 
= pc(l-lx/ 1 I 

leading 
(17) 

where x is the Feynman variable. The observed variation with x of the 

leading particle spectrum is weak, suggesting pc = 1, so that again we 

estimate R = 1. 

In conclusion, we have shown that inclusive short-range order, 

a hypothesis which embraces a wide variety of models for clustering, 

leads to the experimental results summarized in (1) and (2) and connects 

the exponential slope at large rapidity gaps with the energy-dependence 

of topological cross sections. The parameter R can be regarded as 

one measure of clustering: if particles were emitted independently one 

would have R = I/ p1 = 0. 5. Inclusive short-range order alone is, however, 

compatible with almost any value of R, so the consonance of the values 

of R obtained from the gap distribution (1) and the leading particle spectrum 

(17) can be taken as a strong argument in favor of the cluster model. 

Furthermore, R p 1 can be interpreted as the mean charged multiplicity 

of the cluster decay products. The fact that Rpl = 2, a value suggestive 
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of the decays of “ordinary” low mass boson resonances, leads to the 

conjecture that clustering can be interpreted in terms of resonance 

production. The compatibility of our two model estimates of R then 

illustrates an interesting sort of duality. The same amount of clustering 

is predicted assuming either that it results from resonance production 

or that it is due to the presence of exchange forces with range in 

rapidity specified by the Regge intercept ~~(0). 

A consequence of the short-range order interpretation is the 

prediction that the quantity L(n/ Y) will continue to show a scaling 

behavior at higher energies, and that the exponential behavior observed 

in gap distributions will persist at increased energies. 

One of us (A. K. ) is indebted to the Theory Department of 

Fermilab for kind hospitality. 
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FOOTNOTE 

That these are reasonable estimates may be seen by comparison with 

[91. 

REFERENCES 

1 
C. Quigg, P. Pirila, and G. H. Thomas, Phys. Rev. Lett. 34 (1975) 

290; P. Pirila, G. H. Thomas and C. Quigg, Phys. Rev. D. (to be 

published ). 

2 
D.R. Snider, Phys. Rev. D11 (1975) 140. 

3 T. Ludlam and R. Slansky, Los Alamos preprints 75-481, 483 (to be 

published ). These authors do not interpret the experimental distributions 

in terms of short-range order. 

4 Michigan-Rochester Collaboration, 102 and 405 GeV/c pp (to be published); 

Argonne-Fermilab-Stony Brook Collaboration, 205 GeV/ c pp (to be 

published); Notre Dame-Duke-Particle Physics Institute of Canada 

Collaboration and Berkeley-LBL-Fermilab Collaboration, 205 GeV/c 

rr-p (to be published). 

5Aachen-CERN-Heidelberg-Munich Collaboration (to be published). 

6 
R. L. Stratonovich, Topics in the Theory of Random Noise, Vol. I 

(Gordon and Breach, New York-London). 

7 
R. C. Arnold and G. H. Thomas, Phys. Lett. 47B (1973) 371; 



-ii- FERMILAB-Pub-75/40-THY 

G. H. Thomas, Phys. Rev. D8 (1973) 3042. 

8 
Topological cross sections in pp scattering: 

28.4 GeV/c: E. L. Berger, B. Y. Oh and G. A. Smith, Phys. 

Rev. Lett. 29 (1972) 675. 

50 and 69 GeV/c: France-Soviet Collaboration, Phys. Lett. 

iOZ GeV/c: 

205 GeV/c: 

303 GeV/c: 

405 GeV/ c: 

42B (1972) 519. 

C. Bromberg, et al., Phys. Rev. Lett. 31 (1973) 

1563. 

S. Barish, et al., Phys. Rev. D9 (1974) 2689. 

A. Firestone, et al., Phys. Rev. D10 (19741 2080. 

Michigan-Rochester Collaboration, to be published. 

9 F.T. Dao, et al., Phys. Lett. 45B (1973) 402. 

10 
F. T. Dao and J. Whitmore, Phys. Lett. 46B (19731 252. 

L. Stodolsky, in Proceedings of the VIIth Rencontre de Moriond , 

ed. J. Tran Thanh Van (Orsay, 1972), Vol., 2; and quoted in 

S. Pokorski and L. Van Hove, Acta. Phys. Polon. B5 (1974) 229. 



-12- FERMILAB-Pub-75/40-THY 

FIGURE CAPTION 

Fig. 1 (a) L(n/Y) for pp collisions at 28.40, 50 Ls , 69 m , 

102 0, 205 A, 303 0, and 405 l GeV/c [81. We 

employ an effective rapidity interval Y eff E log (s/M; j-1. 5, 

which corresponds to the effective length of the central 

region. 

(b) The same plot after the attempted removal (described in 

the text) of diffractive events. 
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